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Fundamental solutions for a three-dimensional wedge are used to investigate problems of a thin, rigid, elliptic inclusion in a 

wedge. A regular asymptotic form is employed which has previously been used in contact problems for a wedge [l] and in problems 

of a crack in a wedge [2] in the case of an elliptic shape of the contact region or crack. The method is effective in the case of an 

inclusion which is sufficiently distant from an edge of the wedge when the known exact solution for the space [3] can be taken 

as the zeroth approximation. A numerical analysis and comparison of different characteristics of wedge problems is carried out. 

0 2002 Elsevier Science Ltd. All rights reserved. 

Fredholm integral equations of the second kind were obtained [4], in terms of the solution of which 
the displacements and stresses in a three-dimensional elastic wedge, acted upon by normal and shear 
loads on one of its edges and different conditions on the other edge, were expressed. For the case, when 
this edge is stress-free, Papkovich-Neuber functions have been presented in [5] which are identical to 
the well-known solutions of the Boussinesq and Cerruti problems when the angle of the wedge is equal 
to 7c (the case of a half-space). A complex Fourier-Kontorovich-Lebedev integral was used to construct 
the solutions in [4,5] and also the technique of reducing the three-dimensional problem of the theory 
of elasticity to a Vekua generalized Hilbert boundary-value problem [6, 71. 

The exact solutions of two boundary-value problems are obtained below using this technique when 
an arbitrarily directed concentrated force acts in the bisectorial half-plane of the wedge and the faces 
of the wedge are under conditions of sliding clamping (Problem A) and rigid clamping (Problem B). 
When the aperture angle of the wedge is equal to 27c, the solution of Problem A is identical with Kelvin’s 
fundamental solution [8] in the classical theory of elasticity. Problem A generalizes the mixed problem 
for a wedge (the normal displacements and shear stresses on the faces are specified) [9] and Problem 
B generalizes the second basic problem for a wedge [lo] to the case of the action of forces inside the 
wedge. 

1. A CONCENTRATED FORCE INSIDE 
A THREE-DIMENSIONAL WEDGE 

Consider a three-dimensional elastic wedge (0 c r < C-J, ]q] s a, ]z] c -) with aperture angle 2a 
and elastic characteristics G (the shear modulus) and v (Poisson’s ratio) in cylindrical coordinates r, cp 
and z. The z axis is directed along an edge of the wedge such that the system of coordinates is a right- 
handed system (Fig. 1). Suppose an arbitrary concentrated force P, which has the projections P, and 
P, on the coordinates axes, acts at the point r = x, z = y in the middle half-plane cp = 0 of the wedge. 
The faces cp = ?a are under conditions of sliding or rigid clamping (Problems A and B, respectively). 
By virtue of the symmetry of the problem with respect to the coordinate cp, we shall consider the domain 
of the wedge -a c cp < 0 and write the boundary conditions in the form 

cp=-a: uv=2 np = rqZ = 0 Problem A 

cp=-a: u,,,=u,=u,=O ProblemB 

cp=o: uq = 0, 

0.1) 

It is also assumed that the stresses decrease at infinity. 
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ip=-a cp=o cp=a 

Fig. I 

cp=-a cp=o tp=a 

Fig. 2 

We shall express the general solution of the Navier equilibrium equations in cylindrical coordinates 
in terms of three Papkovich-Neuber harmonic functions Q,, = Q,(r, cp, z) (n = 0, 1,2) using the formulae 

aa, 1 a 
u =-+--((ro,)-o,, 01 I 

Jr 4(1- V) & 
= sin ‘pa, - COscp@, 

uw = I aa,, 1 ao, --+---02, q =coscp@,+sinq~Q~ 
r 39 4(1-v) acp (1.2) 

u - aa0 : r awl 
z 

a2 4(1-v) az 

Hence the stresses can be determined using Hooke’s law. 
We shall seek the harmonic functions @‘n in the form of Fourier integrals with respect to z and 

Kontorovich-Lebedev integrals with respect to r. Using the well known technique [6, 71, we find the 
solution of the boundary-value problems (1.1) in the form of (1.2) where 

I 
@‘,(r.(p,z) = - nlG,a $ sh(~z)K,(pr)lp,C,+(r,P)cos(p[z - YI)+ 

+ <Ci(T,B)sin(B[z - yl)P-‘ WiiP, n = 0,1,2 

(1.3) 



The problem of an inclusion in a three-dimensional elastic wedge 

Here K&) is the modified Bessel function. The functions 

C,’ = A~(2,p)ch(cp~)+B~(~,P)sh(cp~) 

B,+(z, P) = - 4(,rv)KiT(px), A~(~,P)=o* B~+(T,P)=K;~(~) 

B,- (7, p) = K;,@) + - 4(1;V)K;JPd~ A;(TP)=;K;~(W 

B;(r,p)=K,(px)=~K,(P*) 

are the same for both of the problems being considered. Then, we have 

Ai(~j3) = cth(aQ 
[ 
Kit(@)+ ~K:,(tw 

I 

B-(T p) = zsh(2aT)Ki,(b) - xsin(2a)K;7(j3x) 
I ’ 

w. (5, a) 

in the case of Problem A and 

A;(% P, = ski, 

B+(z p) = sin(2a) xsh(2aGK;&) - sink, 
1 ’ 

g+(Tla)g(Tta) 

Al (2, p> = 2 sh* (aQ 
[xg+(Ca) - 7Cth(a~)sin(2a)JK,(pli) + 2xsin* aK;T(@) 

g+(~,a)g(xa) 

-$K:,(Br) 
I 

619 

(1.4) 

(l-5) 

(14 

B;(T,~) = =K;&)+ 
g+ (7, a) 

P2xsin(2a)sh(2af) + Tsh(2aQ g+(wMW xg+ (2, a) 1 Ki,<Px> 
A;(T,~)= =K;@)+ 4P2xsin2 ash*(ar) Tsin(2a) 

g+ba) g+(ca)g(ca) -xg+(r,a) I 
Kh(PT) 

in the case of Problem B. 
Here 

g, (%a) = d-Ox) f cos(2a), g(q a) = xsh(2aq - zsin(2a), x = 3 - 4~ 

In the case of the functions (1.4)-(1.6), the integrals (1.3) converge for all cp E [-a, 01. 
The solution of Problem A in the form of (1.3)-(1.5) when a = 71: is identical to the fundamental 

Kelvin solution for an elastic half-space. Actually, in this case 
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A,+(Q)= “;h+‘:” K;db), h+(T.p) = 0, A;@$) = cth(xc)K,&) 

A, (7, P> = cth(xz) K;,@x) + -$K:,W 
1 

~~(‘,P)=Fcth(“)K,(&), A;(z,p)=Cth(~z)KX(px) 

0.7) 

and, for example, for the displacements in the plane of action of the force P, we obtain, using relations 
(1.2) and well-known formulae (Ill], formulae 2.16.52.6,2.16.14.1), the expressions 

where 

1 
R,, =-- (z-Y)* 

R (x+1)R3’ 
R,* =R2, =(r-xx)(z--y) 

(x + 1)R3 

I 
R2* =-- 

(r-x)* 

R (x+1)R3’ 
R=[tr-x)* +(z-y) *K 1 

(1.9) 

They correspond exactly to the fundamental Kelvin solution ([ 121, formulae (9.2) and (9.4)). 

We will now explain why Problems A and B have exact solutions. It is well known [4, 71 that problems of the 
action of a concentrated force on one face of a three-dimensional wedge, the other face of which is under conditions 
of sliding or rigid clamping, reduce to Fredholm integral equations of the second kind. The displacements in the 
wedge can then be expressed in the form of Neuman operator series. The boundary conditions (1.1) considered 
above correspond to inverse problems since, when cp = 0, the displacement u. is specified instead of the stress cr,+,. 
Consequently, the solutions of problem (1.1) must contain the inverse of the above-mentioned Neuman series in 
the form ([2], formula (1.6)) 

[ 1 
-1 

$ (I-2v)“T” = I-(I-2v)T 
n=O 

(1.10) 

where T is a known operator and I is the identity operator. 

2. AN ELLIPTIC INCLUSION INSIDE 
A THREE-DIMENSIONAL WEDGE 

We will now apply the formula obtained above to problems of a thin, rigid inclusion in the middle half- 
plane cp = 0 of a three-dimensional wedge. Suppose this inclusion occupies an elliptic domain Q: 
(r - a)‘/~’ + z’lb’ s 1, a > c, b 3 c (Fig. 2). There is complete adhesion between the inclusion and the 
elastic medium in the contact region. For simplicity, we will assume that the force T, which is applied 
to the inclusion and acts in the half-plane cp = 0, is perpendicular to the edge of the wedge. Consequently, 
the inclusion is moved by an amount 6 in the direction of action of the force. The faces of the wedge 
are under conditions of sliding or rigid clamping (the Problems of inclusion A and B, respectively). It 
is required to determine the shear contact stresses q,+,(r, 0, z) = 2z,(r, z) and z&r, 0, z) = 2rz(r, z), 
(r, z) E S2 and the relation between the quantities T and 6 (only one of these quantities is specified). 

Since the problems are symmetrical about the half-plane cp = 0, we will consider the problems of the 
equilibrium of an elastic wedge -a G cp G 0 with boundary conditions (1.1) for Problems A and B when 
cp = -a and the following boundary conditions 

cp=o: ur=6, u, =O (r,z)eR; 2,=0, Q=O (r,z)en, uV=O (2.1) 

Using the solutions obtained, we express the displacements ur(r, 0, z) and uZ(rr 0, z) using formulae 
(1.2). On replacing P, by 27,(x, y) and Pi by 2~,(x,y) in these expressions, integrating over the domain 
Q with respect to the variables-y andy and satisfying the first two conditions of (2.1), we obtain a system 
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of two integral equations in the unknown contact stresses 7,(x, y) (n = 1,2), (x, y) E Q. On introducing 
the dimensionless quantities 

c* =c 
b 

and henceforth omitting the asterisks, this system can be written in the form 

I ( q X,Y )[ (r - x)(z - y) 
4( I - v)R3 

+ K2,(x,y,r,z) 
I 
da, + 

n 

+ j 7,(X,Y) + K22ky, r,z) 
1 
dR, =O (r,z)cRr( 

R 

where 

K,,(x,y.r,z) = (,_Ljrr2$ $ sh(nu)cos(~[z-yl){ll:(u,a)(h+x)~+W,(u,a)D,+ 

+WJ(u,a)(A+x)$D, Ki.(P[h+x])K;,@[h+r])dudp 
i 

K,, (x. Y, r, z) = (, _Ljn2 $ $ sh(nu)sin(P~-yl){ U;(u.a)$O, + 

+ D,W(u,a,x)}K,,(PIh + xl)K,(P[h+ rlMudf3 

-W3b4,a)(h+r)$ K;,,(PP + xlWj,(P[~ + rl)dudP 

4, (x, y, r, z) = (I _ & % $ WWcos(P[z - yl)W,(u,a)D, - 

-(h + r)W(u,a,x))Ki,(P[k + X])K,(P[h + r])dudp 

D, =r-(h+r)$, D, =r+l+(h+r)$ 

W(u,a,x)= W3(u,a)P2(h+x)+ W4(u,a)d+ 
1 

- W,(u, a) 
ax h+x 

For Problem A, we have 

w(u,a) = cth(au) - cth(m), W2(u,a) 
sh(2au) 

= - - cth(lcu) 
R_ (u, a) 

P-2) 

(2.3) 

(2.4) 

(2.5) 

W,(u,a)=O, Wq(u,a)= W2(u,a), Ws(u,a)= 
u sin(2a) 

g_(u.a) 
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and, for Problem B 

W,(u,a) = th(au) - cth(7cu) 

W*(u,a)= 2sh*(au) 
xg+(u,a) - ucth(au)sin(2a) 

g+(u,a)g(u,a) 
- cth(nu) 

W,(u, a) = 
4sin*ash*(au) 

s+(u, a)g(u,a) 

(2.6) 

W4(u.a) = 
sh(2au) 
--cth(rcu), W5(u,a) = - 

u* sin(2a) 

g+(n& g+(u, a) 

Note that @‘,(a, u) = U(exp[-2cxu]), u + 00 (m = 1, . . . . 5) for a fixed value of a E (0, n]. 
In the kernels of integral equations (2.3) the main parts corresponding to the inclusion in an infinite 

space (Problem A for the case when a = n when K,,(x,y, r, z) = 0 (m, n = 1, 2); see [3], Eq. (1.16)) 
are separated out using formulae (1.8). 

The dimensionless parameter h introduced in (2.2) characterizes the relative remoteness of the 
inclusion from an edge of the wedge; the functions Km,&, y, r, z) + 0 when h + m (m, n = 1, 2). To 
solve the system of integral equations (2.3), we use the regular asymptotic “large h” method [7, l-31, 
taking the exact solution of the problem of an inclusion in a space ([3], formulae (1.18)) as the zeroth 
approximation. The method is based on the following lemma. 

Lemma 1. In the case of Problem A and B of an inclusion, the functions K,,(x, y, r, z) (m, n = 1, 2) 
are continuous together with all their derivatives when (x, y), (r, z) E Q. When 

h>l+c (aE[l,n]), h>a-‘+c (aE[c/2,1]) 

h>(1+c2(1+a2))Xa-’ (aE(O,c/2]) 

(2.7) 

the functions K,,&, y, r, z), (x, y), (r, z) E Q can be represented by the absolutely convergent series 

K,,, (x, y, r, I) = C - mx,YJ*z), m n=l 2 

~/+lm-nl . > 
/=I 

(2.8) 

where k;‘“(x, y, r, z) are certain polynomials. 
Well-known results ([l], the first two formulae of (2.5)) are used to prove the convergence. To obtain 

expansion (2.8), it is necessary to expand the trigonometric functions in formulae (2.4) in series. Integrals 
of the form 

3 K;,(P[h + x1)K;uG.W + rl>P*'4 = 
0 

(2-W = 
A*“’ 

7 7 cos(us)cos(ut)dsdr j=O,l,... 

,-, 0 [(l+x/h)chs+(l+rlh)chf]2i+’ ’ (2.9) 

arise here, where the integral representation of a modified Bessel is used. The double integral (2.9) is 
expanded in a double Taylor series in powers ofxlh and r/h. A formula ([ll], formula 2.16.33.2) which 
can still be written in another form ([l], the last formula of (2.5)) IS used to evaluate the integral 
coefficients in these expansions. 

As a result, we obtain for the functions K,,, when n = m 

mm CO K,,,, (x, y, r, z) = - + 
Cyrnx + Cy”r + 

k. A2 
+ Cymx2 + CTmxr + CFmr2 + C,““(z -Y)* + 0 1 

A3 ( 1 
7* h 

m=l,2 (2.10) 
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where 

71 I I 7-8~ 
c, = ---a,0 +--a 

7-8~ 1 

2 2 20--U 4 30--U 4 3’ 

I I 
c,,’ =---a,, +-a,, - 

7-8~ I 1-8~ 11-8~ 
4 8 -a20 4 --u2, 8 +--a 8 30 -773, 

cl' =~ulo +2,, - 
7-8~ I 1-8~ 1-8~ 
-a20 +-u2, +--a 

4 8 8 30 
+--a 

16 3’ 

cl’ =L,o +L,, + 3( 7 - 8v) 
U 

16 32 I6 
20 - 

15-8~~ 3(7 - 8v) 9-IOV 3 

32 
21 - 

32 
a30+- 

I6 
u3l +E"32 

II 3 5 
c, =-a,0 --a,, + 

7-8~ 

8 I6 8 
U20 + 

11-8~ 7-8~ 2-v 3 

+-u2, -xF” 16 
30 ---a 

4 
31 -E”32 

cll- ‘5u +zu 
5 

+3(7-y 

16 lo 32 ” I6 
20 - 

7-8~ 3(13- 16~) 3(l- 2v) 3 
--a 

32 
21 - 

32 u30 - I6 
a31 + -032 

256 

3 CA’ = -_a 9-8v l9-24v I 
32 II -772, +64 u3l + G”32 

c22 =_7-8v 1 1 I 1 1 
2 

4 
a],) +-a,, +--3, +-a40 -iu4, -yu5o 

8 I6 4 

c22 = 3(7 - 8~) 3-16~ 5 3 
3 l6 alo-32all -32a30-64 -031 + 

I 15 9 I5 I 
+z”32 +z”40 -z”41 -g%O +-%I 

I6 

c22 = 9-8v 9-8v 5 -7 
4 

16 
a,o+ 32 ati +,,a30 +64u31 - 

I 9 7 7 I 
--a 256 32 -~“40+32u41 +,%O 751 

3(7 - 8v) 
c;* = l6 u,,-yu 5 %I,, + II -,,a30 - 64 

I I 1 I 1 
+G”32 -16% -32”41 -,a50 +32a,, 

5-8~ c,22 = -- I 3 

32 
all +25692 - 32 -041 + 

Here, the notation 

U ,,,,, =~ath(~u)W,(a,u)f,(u)du 

(2.11) 

(2.12) 

fo(u)=l. f,(u)=I+4u2, f,(U)=(l+4u*)(9+4U~) 
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has been introduced, and, for the functions K,,,, when n # m, we obtain 

C,” 
K,,,,(.c y,r,z)= - h* (z-Y)+ 

C;““x + Cyr 

l.j 
m, n = 1, 2 (2.13) 

where 

c-12 =_7-*“u,o+lu,,+9u 7-8” 1 7-8” 
0 31 -- a~--a,,+-U 4 8 16 4 8 8 50 

cl2 
I 

= 3-4” 3-4” +--a 5 g-16” 1 
-a,()+-a ” 30- -'31 -E"32+ 4 8 32 64 

+ 3(7 - 8”) 3-8” 
%0-7a 

3(7-8”) I 
- - 

8 41 4 50 -aSI 8 

p2 = W-8”) 20-17” 5 3(9 - 8”) 
2 8 4 32 UIO --U'l-~U30- U3l + 

(2.14) 
1 l-v 

+~U~~+(I-V)U~O+-U 
7-8” 1 

2 
41 -- 

4 U50 +-a51 
8 

CL--la 
0 II +1, + 3 

8 
* 21 7731 

C2’=Lu _Lu _ 5 3 1 
2 ,6 II ,6 21 ~"30-~u31 +-u32 

256 

The values of the constants a,,,,, of the form (2.12) for v = 0.3 and different wedge angles 2a are 
shown in Table 1 for Problem A, when a 3k q 0, a4k = a& and for Problem B. 

Now, on finding the solution of system (2.3) taking account of expressions (2.1) and (2.13) in the 
formula 

2a 

a10 

011 
- a20 
-021 
"50 

a51 

- a10 

-alI 

-a20 

-021 

U30 

a31 

a32 

-a40 

-041 

-a50 

--a51 i 

Table 1 

n/3 nn 2x13 n 4x13 w3 

Problem A 

0.4805 0.3265 0.2511 0.1786 0.1445 0. I255 
4.972 1.663 0.8213 0.3571 0.2292 0.1774 
0.5209 0.3708 0.2887 0.1786 0.1391 0. I249 
5.360 1.874 0.9328 0.3571 0.2204 0.1765 
0.07561 0.1068 0.1354 0.1984 0.04305 0.007350 
1.283 0.8428 0.6201 0.3968 0.09312 0.01453 

72.52 24.18 II.75 4.762 1.054 0.1552 
0.3848 0.1786 0.04495 -0.1786 0.06166 0.1116 
3.050 0.3571 -0.1833 -0.3571 0.05282 0.1503 
0.9497 0.3532 0.1442 0 -0.01641 -0.006663 

16.66 7.492 1.659 0 -0.06285 -0.02083 

Pro1 *m B 
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- ~'n,(-LY) 
75,(%Y)’ XT’ n=l, 2 

I=0 (2.15) 

and equating terms of like powers of the parameter h, we obtain a sequence of systems of two integral 
equations for the successive determination of the functions z,&, y). Each system has the form 

Here, n = 1, 2; 1 = 0, 1, . . . and F,&, z) are known polynomials. 
The solution of system of equations (2.16) for a fixed value of 1 is based on the following lemma (see 

[31, p. 10). 

Lemma 2. If the highest degree of the two polynomials F,&-, z), F&, z), for a lixed value of 1, is equal 
toj, then the solution of system (2.16) can be represented in the form 

Q,r(r.z) 
7”,G-.z) = - 

Ur,z) ’ 
(2.17) 

where Qnr(r, z) are polynomials of degree j. 
Note that Flo(r, z) = 27r6, FZo(r, z) = 0 and the coefficients of the subsequent polynomials Fnr(r, z) 

(n = 1, 2; I = 1, 2, . ..) f or each hxed value of 1 are integrals which now contain the functions Tnm(r, z) 
(n = 1, 2; m = 0, . . . . 1 - l), which are defined using Lemma 2 and are calculated using a well-known 
formula ([7], p. 45, formula (6)). 

In order to determine the unknown coefficients of the polynomials Q,,&, z) in formula (2.17), it is 
necessary to use previous results ([7], p. 44, formula (4) and [3], formula (1.7)). Finally, neglecting terms 
of the other of AA. we obtain 

6 
T,(r,z) = - 

cQr, z) 

,o+L+7;2+7;3r+ 

h x2 

where 

q3 _7;,3'-v) 

4 
-&-c~‘(S,,-3C*S,,)-c:‘[4(1-v)S,,-3&]} 

T,, _ 4(1 -v)c* 
T,, = - - 

4 Do4 

(-cq(s,, -3S,,)-C,‘[4(1 -v)Sa, -3S,,]] 

D2 = k~*[(5-4v)S~,S,~ -3(c*s,, +s,,)S,,] 

_ 

(2.18) 

(2.19) 
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The constants Tlh, T,, and T12 are found from a system of three linear algebraic equations of the form 

Et I El2 El3 T6 El4 

E21 E22 E23 7;7 = E24 

-%I E32 E33 T22 E34 

E,, =c2[4(1-“)(2c2s,, -s,,)-3(4c2s,, -s2,)] 

E,, = -4(1 -“)(c~&,~ -2s,,)+3(3c2s,, -2s2,) 

E,, =3[-c2(2&, +3s,,)+2s,,], E,, =-8(bV)c;’ /Do 

E2, =e2[4c2(s,, -3s,,)+‘t(1-V)(k2~,, -s,,)-2s,,+3s,,] 

E22 =-4(1-V)(c2& -2s,,)-c2(2s,, -9$,)+2(2~,,-3&,) 

E2) = -3(3e2.S2, - 2S3,), E24 = -8(1 - V)cL’ /Do 

E,, = c2[-2c2(.S,,, - 6s12)+sll -3s21]9 E32 =c2(s02 -9s12)-2(slI -3s21) 

E3,=3c2[4(1-v)SIl +&, -‘k2~,2+s,,], Es4 =-4(1-&‘/Do 

(2.20) 

The notation 
RI2 

%I, = I 
cosZm yf sin2n w 

0 (I -e2 sin2 w) 
m+n+,,2 dw, e2 = l-e2 (2.21) 

has been introduced in relations (2.18) and (2.19). 
The integrals (2.21) can be expressed in terms of the complete elliptic integrals K(e) and E(e) 

S, = K(e), So, = 
E(e) - (I- e2)K(e) 

e2 1 - e2 ( ) 

so2 = 

-2(1- 2e2)E(e)+ (2 - 5e2 + 3e4)K(e) 

3e4(1 -e’)’ 

s 
(2-e’)E(e)-2(1-e2)K(e) 

IO 
= K(e)-E(ei, 

e2 

s 
II 

= 

3e4(1 - e’) 

- 

s12 = 

(8 - I 3e2 + 3e4)E(e) + (8 - I 7e2 + 9e4)K(e) 

15e6(l -e2)’ 

s;, = 
-2( I + e’)E(e) + (2 + e2)K(e) 

3e” 

s 
21 

= (S-3e2 -2e4)E(e)-(8-7e2 -e4)K(e) 

15e6(1 -e’) 

(2.22) 

s30 = 

-(8 + 7e2 + 8e4)E(e) + (8 + 3e2 + 4e4)K(e) 

15e6 
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h. 

C 

T/6 
f+lS 
f-IS 
f/S 

T/S 
f+lS 
f-IS 
f/S 

Table 2 

4 6 

0. I 0.5 0.9 0.1 0.5 0.9 

Problem A 

;; j ;Ij pi;: ; ;;; 1 iii! pii 

Problem B 

f 

4.61 
2.59 
2.59 
0 

4.61 

2.59 

2.59 

0 

1.37 

0.829 

0.829 

0 

7.37 

0.829 

0.829 

0 

I 
1 

9.30 

0.581 

0.58 I 
0 

9.30 

0.58 I 
0.581 

0 

The relations between the force T, applied to the inclusion, and its displacement 6 is found from the 
equilibrium condition 

which, in the case of solution (2.18) takes the form 

)I 

(2.23) 

(2.24) 

The values of the quantities T, fe = lim( 1 ? r/c)%i(r, 0), r + kc?0 and f = 10’ . lim( 1 -z)“‘T~(~, z). 
z + 1 - 0, relative to 6, calculated using formulae (2.18)-(2.24) for 2a = 7r/2, v = 0.3 and different 
values of h and c are given in Table 2 

Note that Problem A for a wedge with an apex angle 27cln (n = 1,2, . . .) corresponds to the symmetrical 
problem of n identical inclusions in an infinite space; the inclusions are arranged in half-spaces, the 
angle between which is 27cln. The interaction of four inclusions in a space is investigated for a quarter 
space (Table 2, Problem A). The closer these inclusions are to one another (the smaller h), the greater 
the force T required to displace the inclusions by a specified amount 6. In the case of Problem B, the 
corresponding value of T is greater than in the case of Problem A. A circular inclusion (c 4 1) is more 
difficult to move than one having a large eccentricity (the value of c is small). The coefficient of the 
root singularity of the shear contact stress ‘trcp is somewhat greater on the side of the inclusion which 
is closer to the edge of the wedge (f_ > f+). The estimate T,+,~ = O(r,,lh’), h + CQ holds in the case of 
the shear of an inclusion perpendicular to the edge for transverse motion of the shear contact stress 

=l$U. 
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